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A SIMPLE MEANS OF UPDATING THE SRIF FILTER WHEN

THE STATE EQUATIONS ARE IN TRIANGULAR FORM

INTRODUCTION

Estimating the state of a system from a set of uncertain measurements has been aprob-
lem for a long time. Kalman in the early sixties provided a simple recursive estiinati pro-
cedure by introducing the concept of state and state transition. This procedure inmsomie
instances provided simpler implementation than batching techniques. Since Kalman.'!sgwork a
number of numerical procedures have been developed. An excellent account of these pro-
cedures as well as historical notes can be found in Bierman's book [1]. The squAre-rroot
information filter (SElF filter) is the numerical method of solving the Kalnian-filter equa-
tions, which is of interest in this report.

There are a number of problems which involve a state transition matrix which is; in
upper triangular form. Prominent examples of problems involving the condition areimost
tracking problems. This report describes a simple means of updating the prediction process
of the filter under this condition. A secondary but important result is that the SR1F filter
lends itself to parallel hardware implementation.

REVIEW OF THE SRIF FILTER

The SRIF filter is a numerical method of implementing the Kalman filter [1]. The
Kalman filter is obtained from modeling the process as state equations, defining a measure-
ment procedure, and best estimating the states of the systems. The state equation and meas-
urement process are defined as

X(k) = t(k)X(k -1) + f(k)W(k)

and

XM (k) H(k)X(k) + V(k),

where it is desired to best estimate the n-by-1 state vector X(k). The remaining quantities
are an n-by-n state transition matrix 4(k), an n-by-p matrix r(k), an m-by-n measurement
matrix H(k), and an m -by- 1 measurement vector XM (k). W(k) and V(k) are independent
Gaussian noises with the properties

E[W(k)] =0,
E[W(k) W'(j)] S(k)6k

E[V(k)] = 0,

*Manuscript submitted February 16, 1978.
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and E[ V(k)V'j)] = QFk)fi>,
EjW(k)V'(j)J = 0,

where b is 1 when j = k and is 0 otherwise. The covariance matrices Sfk) and Qfk) are of
dimension p by p and m by m respectively.

The best estimate of X(k), denoted by XZe) in the standard Kalman-filter format, Is

X(k) = X1() + Kek) [Xm (k) - H~k)X , (1)

where K~k) is the filter gain, given by

Kak) = P(kW'(k)Q- 1 (k), (2)

in which PMe) is the smoothed covariance matrix, with

P-1Qek) =r-'(k) +H'(k)Q-'(kW(k). ()

We) is the predicted covariance matrix, with

PNk + 1) = 4k + I1)P(k)k'f + 1) + rik + 1)s(k + 1)lT(k + 1), (4)

and i(k + 1) is the prediction:

X(k + 1) =${k + 1)X(), (5)

The filter operates in a predict-and-correct fashion. This suggests a simple derivation, out-
lined below.

Equation (1) is the least-square estimate between the prediction and the measurement
at the hth sample which is obtained by minimizing the cost function

J(k) = fifk) - XMk'r-' (kdX'(k) - (k)] + FXm(k) - HX(k)1'Q-1 {k)[XM(k) - HX(k)l

with respect to X4(k). The value of X(k) which minimizes J(e) is denoted by 2kQ, is the best
estimate of XQk), and is given in equations (1) through (3). Given the best estimate of XkQ,
the best prediction is simply equation (5) with the covariance of (4). The process is then
simply repeated recursively, with equations (4) and (5) being the prediction and equations
(1) through (3) being the correction.

The SRIF -441 4-r is a mI~eaofn 1'os-Al-.

Cholesky decomposition and the Householder matrix triangulation algorithm t i ]. The
Cholesky decomposition is performed on a symmetric positive-definite matrix by factoring
it into the product of a lower triangular matrix L and its transpose:

Q = L L'

and

Q-1 = (L')-1 -1 .

4
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The algorithm for obtaining L, found in reference 1, is

Miy T

4i = %lj/

forj = 1, .,., n - 1,

for k = ] + 1, ..., n,

and

qj =qik ia- Ri kkj for k = j + I, .............nadz=A ....,n ii hn fok+,. and i k,..n.

The cost function in equation (6) can be written as

J = (X -X)'RR '(X -X) + (XM -HX)'(L')ll-'l(XM -HX), (7)
wl here the parenthetical k has been dropped for notational covenience, P-1 is factored into
RR ', and Q(k) is factored into L L' (note that Q 1 (k) (L'f'17 1 ). Equation (7) c be re-
written as

J = (Z -R XY '(z -R'X) + (ZM Hw X)'(ZM - HWX),

where

ZM = L'XM ,

and

Hw =L-H.

Equation (7) can then be rewritten more compactly as

T s uIrd ozM ts Pw, wMhr
(.)
(8)

The cost J is unaltered if an orthogonal transform T, where
resulting vector in (8). Consequently using

[i'] X jZiHWni [ZJe] =mC
in J = C' C yields the same cost d as

T IP I, is multiplied by the new

J= C'T'T C.

3
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In addition, if T, which is a n + m square matrix, is chosen such that

TtHW O R 9

and

T[J= [] (10)

then the cost J becomes

J= (jj' -:7)'(R'X -:7) + e'e.

By inspection the least-square estimate of X is

'X = Z or 1=-12,

et e is the minimum value of the cost J, and the smoothed covariance is P(k) - ()-"R -t.

For simplification (10) is argumented to (9), yielding

The trasform T triangulizes the matrix.

To show (11) is equivalent to the smoothing portion of the Kalman filter, (11) can be
written as

I 221 A' Z1 [A 
21T 2 2 ILHW ZMJ L0 of

Equating terns, one has

Ti1 1 R+ T12 HW R' (12)

and

T11Z + 2 (.

If one chooses

and

4
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equation (12) becomes

pv'3 u iL + T = 5 R'
A& S au - AsWAW -iL4

Using previous definitions for Hw and usingPJ 1 = RB' and P= 1? ', one obtainsaequa-
tion (3) of the Kalman filter. Similarly, substituting (14) and (15) into (13), one6obtans
equation (1) of the Kalman filter.

The Householder algorithm can be used to triangulize the matrix represented in (11)
without ever computing the transform T directly. Only the basic results are sketched ,and
an example is given. Detailed information may be found in reference 1. The alg.this
based on reflection. Let the vector U be normal to the plane U1 . An arbitrary vector Y can
be represented by

Y =(Y,(U)& + a, .,:0 :(16)
where U = UI( U * U)112 and v is that part of Y that is orthogonal to U. The reflection e of Y
denoted by Yr in the plane U1 is

- (YI'U U+v,

and the results are represented in Fig. 1.

Eliminating v from (16) and (17) yields

Yr= Y-2 u'jU U=(I-J3UU')Y=TY,

where

0 ='U 2Ulu 

f I:: (1 7)
0 A!.! A::

. .

::

. ': . ,1

., .. (18)
' ': ! '

::

.

..

. All

The matrix T is an elementary Householder transform with properties T' = T and 2' "T = 1.
Equation (18) can be shown to triangulize a matrix by first setting the elements of the vec-
tor U by ' -, ' '

r -Y

IV

I Yr\

U1

1' II

I/ :~~~~~~~~~~~
/ Y [~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

/ ._ _ 1-|~~~~~~~~~~~~~~~~~~~
i|4 ( Y U' I 0U ( Y U) U

Fig. 1 - Geometry of the Householder algorithm
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U(2) = y(I) + os

u(2) = y(2),

and

u }) = >JAA

where a = sgn y(i)g WYT . The transform TY yields Yr-ion = u a in ) = 0 forj =2. L ,. -.

The first column of the matrix is chosen as y (j) in order to set uzj). Equation (18) is then
applied successively, The sign on (18) is changed to yield positive diagonal elements of oa
and the notation j3 = 2/U'Uis introduced. The algorithm operating on successive columns of
the matrix is

Yr = -Y + P'Y U)U.

For example

TI

a11 + a1

a3.

La 41

all a12 513

a2 1 a2 2

031 032

041 042

523

a3S

043]

1
Q

O

I

ol~sgnea, 1 Qa21 +021 +a2 +a412

P= 21U'U,

ylj= aju(1l) + a2ju(2) + a3ju(3) + a4p(4),

and

bU =-aij+gPyljU(i) forj=1,2,and3andi=1,..., 4 .

S

--.1 Uwil&uC

b1 2 b1 3

b 2 2 b2 3

b3 2 b3 3

F4 2 b43

X
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The process is repeated for each successive submatrix. The next step is

[t A]2

1 b12 bF3

0 b2 2 F23

0 b32 b3 3

0 b4 2 b43

where

b2 2 + a2

U = b3 2

b42

o2 = sign(b2 2 ) b22 +b3 2 429

,B= 2/U'U,

I

01 b12 b13

o 02

00O

C2 3

C33

0 0 C4 3

72j = b2iU(1) + b3ju(2) + b4ju(3),

and

c11=-.bijF+%3y2 1uGj-1) forj=2and3andi=2,3,and4.

Equation (19) is the desired triangular form required of equation (11) for the exmple.
The correspondence is

[ a a F 111 012 12]

[021 a22 0 L 2j

L31 32]

41 a42

2 = 1 Z 2 b13

L23 LC232

ZM =[ a33

33
, and e =

_C432

The Householder algorithm just described can be compactly encoded in Fortran for
general computer operation. In some cases a hardware implementation is desirablekald"is
shown schematically in Fig. 2.
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LIti

L4-J

Y12

°11

0L°o'

I

f12
I a2,2

1 32

L'42

. 13

fl b4

723

12 13
Fig, 2 - Schematic of operations performed

with the Householder algorithm

The Kalman and SELIF filters were briefly reviewed to set the notation and acquaint
those readers not familiar with algorithms with the salient features. A simple means of
obtaining the prediction portion of the SRIF filter under an important special case is next
considered.

PREDICTION PROCESS

The smoothing portion of the Kalman filter using SRE implementation updates the
factorization of the smoothed covariance and the transformed best estimate. It is desirable
to update the prediction process in a commensurable form. Only an important special case
is considered.

The process noise W(k) is assumed to be zero, and the state transition matrix is
assumed to be in upper triangular form. Equation (4) updating the prediction covariance
then becomes

Pk 04, (20)

R

a2 3

a33

"43

f bial

b2L

b33

e b43
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where the noise W(k) is removed and the sample k has been dropped for notational conveni-
ence. The inverse of (20) is taken, yielding

1-l = (ct,'y-'P-'4r' ; 0 (21)

The covariances are replaced with their factorization

R A' = (-1,F'R'4V-'

which can be rewritten as

A A'= [(4')-'k] [(s')-1].i

Note that QF'P1 R is in lower triangular form, which means that

B = (4'- 1 R. . (22)

Equation (22) shows the simple form of updating the factor of the prediction covrae.

The predicted state given by

X 4'.X

from equation (5) is transformed by

(Rt'-1 Z = ('-Z

where X = (R')- 1 Z and X = (R'f t Z. Solving for Z yields

Z = (R')F(R''lZ. f , (23)

Substituting B from (22) into (23) yields

Z=Z. : (24)

The transformed smoothed and predicted states are seen to be identical.

Sometimes it is desirable to implement a fading-memory filter by making the
smoothed covariance larger. This is accomplished by rewriting equation (21) as

p-1 = ((C)1)-I J 1 4l~t-

The parameter is a scaler representing a time fading by

a = i

where ris the time constant and t is time. Equation (22) is modified by

9
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R = sral- R

and equatioln (4, remains the samie under the fading-memory condition.

BMLEMENTATION

As an example a tracking problem is taken into consideration. The state tansition'
matrix

I t 0 0l 1l -t 0 0

J Si rJwhere r'1 L~ V 
0 1 v 0hr - 0 1 - 1
0 O 0 1 O O 1

represents a target moving in a straight line in a two-dimensional Cartesian coordinate sys-
tem. The components of the state vector X(h) to be estimated are X1 (k), the position in the
ith direction; X2 (k), the velocity in the ith direction; X3 (k), the position in the jth direc-
tion; and X4 (k), the velocity in the jth direction. Only the positions are measured; conse-
quently the measurement matrix H is

H={ : i]
O O 1 0

The functional flow of the filter is shown in Fig. 3. The measurement is prewhitened
using the Cholesky factorization. In most tracking problems the inverse required can simply
be written in closed form using the Cramer rule. The prediction variables are updated with
no more than a matrix multiplication. These steps can be mechanized with several degrees of
parallelism in hardware. Finaliy the smoothing is performed using the Householder algo-
rithm shown schematically in Fig. 2. The output of the filter in normal tracking is the sta-
tistical distance [2, 3] J = e'e which is required for correlation (a direct consequence of the
filter) and the predicted position X used in correlation and for display. The outputs are
easily obtained, including X, because B 1- need not be found. The best estimate X can be
obtained from 2 and R directly by back substitution 1 since R' is in triangular form. All the
operations described including the Householder algorithm are simple operations easily
mechanized with parallelism in the hardware.

SUMMARY

The SRIF filter was briefly reviewed, including the Cholesky factorization and House-
holder algorithm. The smoothing portion of the SRIF filter is claimed to have good numeri-
cal characteristics and lends itself to parallel hardware operation. The prediction process
under an important simple case was examined. The state transition matrix was assumed to
be in upper triangular form, and the process noise was assumed to be zero. Most tracking
problems can be formulated in this form. Under this special case it was shown that the trans-
formed smoothed and predicted states were identical and -that the smoothed and predicted
covariance factors were related by a simple matrix transform. Consequently the entire SRIF
filter including both the smoothing and prediction lends itself to hardware implementation.

10
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Obtain new measurement

Prewhiten measurement:

Q = L L' ,

HW = L-1 H. and ZM = L'l XM

I_

Prediction:

Z = Zr and R' 4 '-1

._ I 

Smoothing:

[HW ZM] [S e

I

Fig. 3 - Functional flow of the SRIF filter
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